2002. 4. 23
1. For given 2 lines
Show that the angle @ between two lines
2. Find the intersection point between the plane 3x+4y+z=24 and the line whose end points are p0=(10,-10,2), p1=(10,2,2)
y1 = m1x1 - b1 |
y2 = m2x1 - b2 |
Show that the angle @ between two lines
tan@ = (m1-m2) / (1+m1*m2) |
2. Find the intersection point between the plane 3x+4y+z=24 and the line whose end points are p0=(10,-10,2), p1=(10,2,2)
(a) First. find the parametric equation for line for (t = 0 ~ 1)
(b) Find the value of the parametric variable corresponding to the intersection point.
(c) Find the values of the X,Y,Z coordinate values of plane.
(b) Find the value of the parametric variable corresponding to the intersection point.
(c) Find the values of the X,Y,Z coordinate values of plane.
(a) Compute the scalar product.
(b) Compute the angle between the vectors.
(b) Compute the angle between the vectors.
4.
(a) pivoting λ°©λ²μ μ ννλ μ΄μ λ₯Ό μ€λͺ
νμμ€.
(b) Maximal column pivoting κ³Ό
(c) Scaled partial pivoting κ°λ μ μ€λͺ νμμ€.
(b) Maximal column pivoting κ³Ό
(c) Scaled partial pivoting κ°λ μ μ€λͺ νμμ€.
5. Lagrange, Hermite, spline ν¨μμ νΉμ§μ Smoothness κ΄μ μμ λΉκ΅ μ€λͺ
νμμ€.
6. For given p0, p1, p0u, p1u, induce the p(u)=au^3 + bu^2 + cu + d, in the form of p(u)=U*M*B (μ¬κΈ°μλ Dot Productμ)
where
~cpp U = [u^3 u^2 u 1] B = [p0 p1 p0u, p1u ]T M = [ 2 2 1 1 ] [ -3 3 -2 -1 ] [ 0 0 1 0 ] [ 1 0 0 0 ]
Thread ¶
- νμ΄ν μνμ΄μκ³ , λ°°μ΄ κ² μμ£Όμ¬μ 그리 ν λ§ μμ. μνλ¬Έμ νΉμ§μ λ΅μ΄μΌ λͺ
ννκ²μ΄κ³ ;
- μν곡λΆλ₯Ό ν λ 체ν¬λ¦¬μ€νΈ λ§λ€κ³ ν΄λΉ νλͺ©λ€μ μ§μ μ¦λͺ
ν΄λ³΄κΈ° μμΌλ‘ 곡λΆνλλ°, κ°μ₯ νμ€ν κ² κ°λ€. (νμ§λ§, μνμκ°μ μΌμΌν μ¦λͺ
ν΄μ νΌλ€λ 건 μ’ μ°μ€μ΄κ±°κ³ ; νλ‘κ·Έλλ°μμλ idoim μ΄ μλ―, 빨리 νλ €λ©΄ 곡μμ μΈμμΌκ² μ§. νμ§λ§, 'μΈμμ§κ²' νλκ²μ΄ κ°μ₯ μ’κ² λ€.)
- μ€μ ꡬνλΆλΆμ νλ‘κ·Έλ¨ λ ν¬νΈκ° λ체ν΄μ£Όλ―λ‘, μ΄λ‘ /ꡬν νκ°μ λν΄μλ μ μ νλ€κ³ μκ°λ¨. --μμ²
- μν곡λΆλ₯Ό ν λ 체ν¬λ¦¬μ€νΈ λ§λ€κ³ ν΄λΉ νλͺ©λ€μ μ§μ μ¦λͺ
ν΄λ³΄κΈ° μμΌλ‘ 곡λΆνλλ°, κ°μ₯ νμ€ν κ² κ°λ€. (νμ§λ§, μνμκ°μ μΌμΌν μ¦λͺ
ν΄μ νΌλ€λ 건 μ’ μ°μ€μ΄κ±°κ³ ; νλ‘κ·Έλλ°μμλ idoim μ΄ μλ―, 빨리 νλ €λ©΄ 곡μμ μΈμμΌκ² μ§. νμ§λ§, 'μΈμμ§κ²' νλκ²μ΄ κ°μ₯ μ’κ² λ€.)