U E D R , A S I H C RSS

Numerical Analysis Class/Exam2002_1

2002. 4. 23

1. For given 2 lines
y1 = m1x1 - b1
y2 = m2x1 - b2

Show that the angle @ between two lines
tan@ = (m1-m2) / (1+m1*m2)

2. Find the intersection point between the plane 3x+4y+z=24 and the line whose end points are p0=(10,-10,2), p1=(10,2,2)

(a) First. find the parametric equation for line for (t = 0 ~ 1)

(b) Find the value of the parametric variable corresponding to the intersection point.

(c) Find the values of the X,Y,Z coordinate values of plane.

3. For given pair of vectors a=3,0,-2, b=0,-1,3

(a) Compute the scalar product.

(b) Compute the angle between the vectors.

4.

(a) pivoting 방법을 μ„ νƒν•˜λŠ” 이유λ₯Ό μ„€λͺ…ν•˜μ‹œμ˜€.

(b) Maximal column pivoting κ³Ό

(c) Scaled partial pivoting κ°œλ…μ„ μ„€λͺ…ν•˜μ‹œμ˜€.

5. Lagrange, Hermite, spline ν•¨μˆ˜μ˜ νŠΉμ§•μ„ Smoothness κ΄€μ μ—μ„œ 비ꡐ μ„€λͺ…ν•˜μ‹œμ˜€.

6. For given p0, p1, p0u, p1u, induce the p(u)=au^3 + bu^2 + cu + d, in the form of p(u)=U*M*B (μ—¬κΈ°μ„œλŠ” Dot Productμž„)

where
~cpp 
U = [u^3 u^2 u 1]

B = [p0 p1 p0u, p1u ]T

M = 
[ 2 2 1 1 ] 
[ -3 3 -2 -1 ]
[ 0 0 1 0 ]
[ 1 0 0 0 ]

Thread

  • ν‰μ΄ν•œ μ‹œν—˜μ΄μ˜€κ³ , 배운 것 μœ„μ£Όμ—¬μ„œ 그리 할말 μ—†μŒ. μˆ˜ν•™λ¬Έμ œ νŠΉμ§•μƒ 닡이야 λͺ…ν™•ν•œκ²ƒμ΄κ³ ;
    • μ‹œν—˜κ³΅λΆ€λ₯Ό ν• λ•Œ 체크리슀트 λ§Œλ“€κ³  ν•΄λ‹Ή ν•­λͺ©λ“€μ€ 직접 증λͺ…해보기 μ‹μœΌλ‘œ κ³΅λΆ€ν–ˆλŠ”λ°, κ°€μž₯ ν™•μ‹€ν•œ 것 κ°™λ‹€. (ν•˜μ§€λ§Œ, μ‹œν—˜μ‹œκ°„μ— 일일히 증λͺ…ν•΄μ„œ ν‘Όλ‹€λŠ” 건 μ€ μš°μŠ€μš΄κ±°κ³ ; ν”„λ‘œκ·Έλž˜λ°μ—μ„œλ„ idoim 이 μžˆλ“―, 빨리 ν’€λ €λ©΄ 곡식을 μ™Έμ›Œμ•Όκ² μ§€. ν•˜μ§€λ§Œ, 'μ™Έμ›Œμ§€κ²Œ' ν•˜λŠ”κ²ƒμ΄ κ°€μž₯ μ’‹κ² λ‹€.)
    • μ‹€μ œ κ΅¬ν˜„λΆ€λΆ„μ€ ν”„λ‘œκ·Έλž¨ λ ˆν¬νŠΈκ°€ λŒ€μ²΄ν•΄μ£Όλ€λ‘œ, 이둠/κ΅¬ν˜„ 평가에 λŒ€ν•΄μ„œλŠ” μ μ ˆν•˜λ‹€κ³  생각됨. --μ„μ²œ
Valid XHTML 1.0! Valid CSS! powered by MoniWiki
last modified 2021-02-07 05:23:52
Processing time 0.0098 sec