No older revisions available
No older revisions available
수치해석 레포트로 나온 TriDiagonal 문제에 대한 나름대로의 (--;) TFP 식 접근 풀이. 오히려 다른 사람들보다 소스가 커지긴 했지만, 소스를 원한다면 더 줄일 수 있고 (단, 코드를 알아보기 어려워질까봐 묶을 수 있는 부분에 대해서도 풀어 씀), LU 분해 부분에 대해서는 어느정도 일반화를 시켰다고 생각하기에 그리 나쁘진 않다고 생각하는중.
LU 분해 뒤 해당 계산이 제대로 되었는지를 확인하기 위해 Numeric Python 모듈을 이용했다. 여기 에서 받을 수 있다.
- 느낀점 - LU 분해를 일반화시키는 부분에 대해서는 연습장에서 계산을 시키고 대입을 해보고 패턴을 찾아낸 뒤 일반화시켰다. 만일 이 부분을 코드를 짜면서 TestFirstProgramming * Refactoring 의 방법으로 풀었더라면 어떠했을까. (두 개의 과정이 비슷하다고 여겨진다. 코드가 줄어들고 OAOO 의 원칙을 지킬 수 있을테니까.) -- 석천
- 해결한 시간 : 대략 6시간 10분 (수학 일반화 계산 1시간 30분, LU 분해 2시간 30분, tri-diagonal 2시간 12분)
test_lu.py - LU Decomposition 을 위한 test code ¶
~cpp import unittest from Numeric import * from Matrix import * from LuDecomposition import * class TestLuDecomposition(unittest.TestCase): def setUp(self): self.a = [[1.0,2.0,3.0],[4.0,5.0,6.0],[7.0,8.0,9.0]] self.matrixA = Matrix(array(self.a)) def testLwrite(self): ld = LuDecomposition(self.a) col = 0 ld._writeL(col) self.assertEquals(ld._getL(), [[1,0,0],[4,0,0],[7,0,0]]) def testUwrite(self): ld = LuDecomposition(self.a) col = 0 ld._writeL(col) row = 0 ld._writeU(row) self.assertEquals(ld._getU(), [[1,2.0,3.0],[0,1,0], [0,0,1]]) def testLuDecMore(self): ld = LuDecomposition(self.a) ld._writeL(0) ld._writeU(0) self.assertEquals(ld._getL(), [[1,0,0],[4,0,0],[7,0,0]]) self.assertEquals(ld._getU(), [[1,2,3],[0,1,0], [0,0,1]]) ld._writeL(1) ld._writeU(1) self.assertEquals(ld._getL(), [[1,0,0],[4,-3,0],[7,-6,0]]) self.assertEquals(ld._getU(), [[1,2,3],[0,1,2], [0,0,1]]) ld._writeL(2) ld._writeU(2) self.assertEquals(ld._getL(), [[1,0,0],[4,-3,0],[7,-6,0]]) self.assertEquals(ld._getU(), [[1,2,3],[0,1,2], [0,0,1]]) def testLuDecomposition(self): l, u = LuDecomposition(self.a).perform() matrixL = Matrix(array(l)) matrixU = Matrix(array(u)) actual = matrixL * matrixU self.assertEquals(str(actual), str(self.matrixA)) if __name__=="__main__": unittest.main()
LuDecomposition.py - LU Decomposition ¶
~cpp from Numeric import * from ArrayPrinter import * class LuDecomposition: def __init__(self, aSquareArray): assert len(aSquareArray) == len(aSquareArray[0]) self.array = aSquareArray self.n = len(aSquareArray) self.l = self.makeEmptySquareMatrix(self.n) self.u = self.makeEmptySquareMatrix(self.n) for i in range(self.n): self.u[i][i] = 1.0 def makeEmptySquareMatrix(self, n): matrix = [] for i in range(0,n): row = [] for j in range(0,n): row.append(0.0) matrix.append(row) return matrix def perform(self): for i in range(self.n): self._writeL(i) self._writeU(i) return self.l, self.u def _writeL(self, aCol): for eachRow in range(aCol, self.n): self.l[eachRow][aCol] = self.array[eachRow][aCol] - self._minusForWriteL(eachRow, aCol) def _minusForWriteL(self, aRow, aCol): totalMinus = 0 for n in range(0, aCol): totalMinus += self.l[aRow][n] * self.u[n][aCol] return totalMinus def _writeU(self, aRow): for eachCol in range(aRow+1, self.n): self.u[aRow][eachCol] = float(self.array[aRow][eachCol] - self._minusForWriteU(eachCol, aRow)) / float(self.l[aRow][aRow]) def _minusForWriteU(self, aCol, aRow): totalMinus = 0 for n in range(0, aRow): totalMinus += self.l[aRow][n] * self.u[n][aCol] return totalMinus def _getL(self): return self.l def _getU(self): return self.u if __name__=="__main__": a = [[1.0,2.0,3.0],[4.0,5.0,6.0],[7.0,8.0,9.0]] l, u = LuDecomposition(a).perform() print "array : " print array2string(array(a)) print "Lu Decomposition - L" print array2string(array(l)) print "Lu Decomposition - U" print array2string(array(u))
test_tridiagonal.py - tri-diagonal 부분에 대한 test-code ¶
~cpp import unittest from Numeric import * from Matrix import * from LuDecomposition import * from TriDiagonal import * class TestTridiagonal(unittest.TestCase): def testGetMatrixY(self): a = [[1,1,-1],[2,6,-4],[1,-1,-1]] b = [[3],[6],[8]] l, u = LuDecomposition(a).perform() expected = [[3],[0],[-5]] actual = getMatrixY(l, b) self.assertEquals(actual, expected) def testGetMatrixX(self): a = [[1,1,-1],[2,6,-4],[1,-1,-1]] b = [[3],[6],[8]] l, u = LuDecomposition(a).perform() expectedY = [[3],[0],[-5]] matrixY = getMatrixY(l, b) self.assertEquals(matrixY, expectedY) expectedX = [[0.5],[-2.5],[-5]] matrixX = getMatrixX(u, matrixY) self.assertEquals(matrixX, expectedX) if __name__=="__main__": unittest.main()
tri-diagonal.py - 실질적인 tri-diagonal 을 계산하는 모듈 ¶
~cpp from LuDecomposition import * from Numeric import * from ArrayPrinter import * import pdb def getMatrixY(aMatrixLower, b): matrixY = makeEmptyMatrix(len(b),1) for n in range(len(b)): matrixY[n][0] = float(b[n][0] - _minusForGetMatrixY(n, aMatrixLower, matrixY)) / float(aMatrixLower[n][n]) return matrixY def getMatrixX(aMatrixUpper, y): limitedMatrix = len(y) matrixX = makeEmptyMatrix(limitedMatrix,1) for n in range(limitedMatrix-1, -1,-1): matrixX[n][0] = float(y[n][0] - _minusForGetMatrixX(n, aMatrixUpper, matrixX)) / float(aMatrixUpper[n][n]) print "x[%d]: y[%d][0] - minus:[%f] / u[%d][%d]:%f : %f"% (n,n,_minusForGetMatrixX(n, aMatrixUpper, matrixX),n,n, aMatrixUpper[n][n], matrixX[n][0]) return matrixX def _minusForGetMatrixX(n, aUpperMatrix, aMatrixX): totalMinus = 0 limitedMatrix = len(aMatrixX) for t in range(n+1,limitedMatrix): totalMinus += aUpperMatrix[n][t] * aMatrixX[t][0] return totalMinus def _minusForGetMatrixY(n, aLowerMatrix, aMatrixY): totalMinus = 0 for t in range(n): totalMinus += aLowerMatrix[n][t] * aMatrixY[t][0] return totalMinus def makeEmptyMatrix(aRow, aCol): emptyMatrix = [] for i in range(0,aRow): emptyRow = [] for j in range(0,aCol): emptyRow.append(0.0) emptyMatrix.append(emptyRow) return emptyMatrix def prettyPrintMatrix(aMatrix): print array2string(array(aMatrix)) def printSeparator(): print "*-" * 35 if __name__=="__main__": a = [[4.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 4.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 4.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 4.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 4.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 4.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 4.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 4.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 4.0]] b = [[5.0], [6.0], [6.0], [6.0], [6.0], [6.0], [6.0], [6.0], [5.0]] l, u = LuDecomposition(a).perform() printSeparator() print "LuDecomposition - Matrix L:" prettyPrintMatrix(l) #pdb.set_trace() printSeparator() matrixY = getMatrixY(l, b) print "Calculated - Matrix Y" prettyPrintMatrix(matrixY) printSeparator() print "LuDecomposition - Matrix U:" prettyPrintMatrix(u) printSeparator() print "Final - Matrix X" matrixX = getMatrixX(u, matrixY) prettyPrintMatrix(matrixX)