1. Information ¶
Purpose: Learning basic knowledge of robotics
Lecture: CS223A, Stanford University
Date: Jan 21, 2019 ~
Lecture: CS223A, Stanford University
Date: Jan 21, 2019 ~
* Prerequite
- Linear Algebra
- Numerical Analysis
- Linear Algebra
- Numerical Analysis
2. Reference ¶
Material: Copy from Stanford
Video clips: https://www.youtube.com/watch?v=0yD3uBshJB0&list=PL65CC0384A1798ADF
Video clips: https://www.youtube.com/watch?v=0yD3uBshJB0&list=PL65CC0384A1798ADF
3.1.2. Book ¶
General Manipulator: Robot Arm, using Revolute joint, Prismatic joint
- Robot Arm: base, link, joint, end-effector
- Revolute joint: Rotation movement, 1 Degree of Fredom(DoF)
- Prismatic joint: Linear movement, 1 DoF
- Denote joint type using ε(0 for revolute, 1for prismatic)
- Robot Arm: base, link, joint, end-effector
- Revolute joint: Rotation movement, 1 Degree of Fredom(DoF)
- Prismatic joint: Linear movement, 1 DoF
- Denote joint type using ε(0 for revolute, 1for prismatic)
Discription of body1 (9 parameters)
- Link location: 3 points (Each point has 3 parameters)
- Link location: 3 points (Each point has 3 parameters)
Discription of body2 (6 parameters)
- Body orientation: 3 parameter
- Point on the body: 3 parameter
=> Robot arm(n:links, 1: base) has n DoF
- Body orientation: 3 parameter
- Point on the body: 3 parameter
=> Robot arm(n:links, 1: base) has n DoF
Transformation
- Pure Rotation
- Pure Translation
- General Tasformation
- Inverse Transformation
- Pure Rotation
- Pure Translation
- General Tasformation
- Inverse Transformation
Configuration Representation
There is no universial agreement in the field of robotics as to what is the best orientation representation.
Because each representation hase advantages and shortcomings
- Direction Cosines:
- Euler angle representation: ZYX, angle(α, β, γ)
- Fixed angle representation: XYZ, angle(γ, β, α)
- Inverse of an orientation representation
There is no universial agreement in the field of robotics as to what is the best orientation representation.
Because each representation hase advantages and shortcomings
- Direction Cosines:
- Euler angle representation: ZYX, angle(α, β, γ)
- Fixed angle representation: XYZ, angle(γ, β, α)
- Inverse of an orientation representation