U E D R , A S I H C RSS

Numerical Analysis Class/Exam2002_2

1. μ£Όμ–΄μ§„ ν•¨μˆ˜ f(x) = x^3 + x - 4 이 ꡬ간 1,4 μ—μ„œ ν•˜λ‚˜μ˜ ν•΄λ₯Ό 갖을 λ•Œ, κ·Έ 근사값이 10^-4 의 였차 ν•œκ³„μ—μ„œ κ΅¬ν•˜κΈ° μœ„ν•΄ 이뢄법 (bisection method) 을 μ μš©ν•˜μ˜€μ„ λ•Œ μ΅œλŒ€ 반볡횟수λ₯Ό κ³„μ‚°ν•˜μ‹œμ˜€.

2. μ£Όμ–΄μ§„ ν–‰λ ¬ A μ—μ„œ
1 2 3
4 5 6
7 8 9
a) μ›μ†Œ 5의 μ—¬μΈμˆ˜(cofactor) λ₯Ό κ΅¬ν•˜κ³ 

b) μ—¬μΈμˆ˜λ₯Ό μ΄μš©ν•œ determinant λ₯Ό κ³„μ‚°ν•˜μ‹œμ˜€.

3. 고정점 λ°˜λ³΅λ²•(Fixed-point iteration)κ³Ό Newton λ°˜λ³΅μ‹μ˜ 1,2μ°¨ μˆ˜λ ΄μ„±μ„ 증λͺ…ν•˜μ‹œμ˜€.

4. 점 P λ₯Ό 직선 l=mx + b λ₯Ό μ€‘μ‹¬μœΌλ‘œ Reflection ν•˜μ—¬ p* 둜 λ³€ν™˜λ˜λŠ” λ³€ν™˜ν–‰λ ¬ Tλ₯Ό κ³„μ‚°ν•˜μ‹œμ˜€.
(tan@ = m, cos@ = 1 / sqrt(m^2+1), sin@ = m / sqrt(m^2+1)

5. λ‹€μŒμ˜ μž‘μ—…μ„ μˆ˜ν–‰ν•˜λŠ” λ³€ν™˜ν–‰λ ¬ Tλ₯Ό κ΅¬ν•˜μ‹œμ˜€.
1) x,y,z μΆ• λ°©ν–₯으둜 각각 l,m,n 만큼 μœ„μΉ˜ μ΄λ™μ‹œν‚€κ³ 

2) y좕을 μ€‘μ‹¬μœΌλ‘œ 각 v 만큼 νšŒμ „μ‹œν‚¨ ν›„

3) λ‹€μ‹œ x좕을 μ€‘μ‹¬μœΌλ‘œ w 만큼 νšŒμ „μ‹œν‚€κ³ 

4) x,y,z μΆ• λ°©ν–₯으둜 -l, -m, -n 만큼 μœ„μΉ˜ 이동을 함


6. λ‹€μŒμ„ μ„€λͺ…ν•˜μ‹œμ˜€.
1) Homogeneous μ’Œν‘œκ³„μ˜ μ„±μ§ˆ 및 μž₯점

2) Convex polygon

3) Affine transformation
Valid XHTML 1.0! Valid CSS! powered by MoniWiki
last modified 2021-02-07 05:23:52
Processing time 0.0096 sec