# 3. 코드 ¶

## 3.1. 15이원준 ¶

```#include<iostream>
#include<stdio.h>
#include<vector>

using namespace std;

int main(){
vector<int> in;
vector<int> vec;
int N;
scanf("%d", &N);
int size;
size = N * (N + 1) / 2;
for(int i = 0; i<size; i++){
int temp;
scanf("%d", &temp);
in.push_back(temp);
}
vec.resize(size, 0);
int i = 0;
vec[0] = in[0];
for(int j = 1; j<N; j++){ //줄 변경
for(int m = 0; m<j; m++){ //m번째 줄 전부 탐색
for(int k = 0; k < 2; k++){ //아왼, 아오
if(vec[i + k + j] < vec[i] + in[i + k + j])
vec[i + k + j] = vec[i] + in[i + k + j];
}
i++;
}
}
int max = 0;
for(int j = size-N; j <size; j++){
if(max < vec[j]){
max = vec[j];
}
}
printf("%d\n", max);
}
```

## 3.2. 박인서 ¶

```#include <iostream>
#include <algorithm>
int a[501][501], dp[501][501];

int main() {
int n;

std::cin >> n;
for (int i = 0; i<n; i++) {
for (int j = 0; j <= i; j++) {
std::cin >> a[i][j];
}
}

dp[0][0] = a[0][0];
for (int i = 1; i<n; i++) {
dp[i][0] = dp[i - 1][0] + a[i][0];
for (int j = 1; j<i; j++) {
dp[i][j] = std::max(dp[i - 1][j - 1], dp[i - 1][j]) + a[i][j];
}
dp[i][i] = dp[i - 1][i - 1] + a[i][i];
}

int max = 0;
for (int i = 0; i<n; i++) {
if (max<dp[n - 1][i]) max = dp[n - 1][i];
}

std::cout << max;
return 0;
}
```

## 3.3. 곽정흠 ¶

```#include <stdio.h>

typedef struct {
int num;
int maxSum;
}node;

node tri[500][500];

int main() {
int n;
int maxRoute;
int maxFinal;
scanf("%d", &n);

for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++) {
scanf("%d", &(tri[i][j].num));

if (i == 0 && j == 0) {
tri[i][j].maxSum = tri[i][j].num;
}
else {
if (j != 0 && j != i) {
if (tri[i - 1][j - 1].maxSum > tri[i - 1][j].maxSum) {
tri[i][j].maxSum = tri[i - 1][j - 1].maxSum + tri[i][j].num;
}
else {
tri[i][j].maxSum = tri[i - 1][j].maxSum + tri[i][j].num;
}
}
else if (j == 0 && i != 0) {
tri[i][j].maxSum = tri[i - 1][j].maxSum + tri[i][j].num;
}
else if (j == i&&j != 0) {
tri[i][j].maxSum = tri[i - 1][j - 1].maxSum + tri[i][j].num;
}
}
}
}

maxFinal = tri[n - 1][0].maxSum;
for (int i = 1; i < n; i++) {
if (tri[n - 1][i].maxSum > maxFinal) {
maxFinal = tri[n - 1][i].maxSum;
}
}

printf("%d", maxFinal);

return 0;
}
```