- Pairsumonious_Numbers/김태진 . . . . 8 matches
for(i=2;i<n*(n-1)/2-1;i++){
for(j=i+1;j<n*(n-1)/2;j++){
for(i=0;i<n-1;i++){
sort(checkArr,checkArr+n*(n-1)/2,comp);
sort(arr,arr+n*(n-1)/2,comp);
for(i=0;i<n*(n-1)/2;i++){
for(i=0;i<n*(n-1)/2;i++){
sort(arr,arr+n*(n-1)/2,comp);
- PascalTriangle . . . . 7 matches
return pas(m-1,n-1)+pas(m-1,n); // 재귀호출
ulong return_value=Array[m-1][n-1];
// (n-1)!/((n-1)-(m-1))! 을 계산
p=n-1;
return x/y; // (n-1)!/(((n-1)-(m-1))!*(m-1)!) 을 리턴
- 호너의법칙 . . . . 7 matches
A(x) = (a<sub>n</sub>)X<sup>n</sup>+ a<sub>n-1</sub>X<sup>n-1</sup> + ... + a<sub>1</sub>X + a<sub>X</sub>
((((a<sub>n</sub>)X + (a<sub>n-1</sub>))X + (a<sub>n-2</sub>))X + ... a<sub>1</sub>)X + a<sub>0</sub>
아마 a[11 안에 들어있는 값들은 an, an-1인듯한데, 그렇다면 n의 값도 입력받는지? 11개 고정?
곱셈과 덧셈횟수를 줄이라는데, { ... ((anX + an-1)X + an-2)x + ... a1 }X + a0 모양으로 정해진게 아니었던가..;;ㅁ;;
그리고 Xn-1는 X의 n-1승 맞음. 곱셈이나 덧셈을 줄이라는 말은, 아마 최소의 항 수를 가지게 하는 것 같음.
- Eric3 . . . . 6 matches
http://www.die-offenbachs.de/detlev/images/eric3-screen-1.png
http://www.die-offenbachs.de/detlev/images/eric3-screen-10.png
http://www.die-offenbachs.de/detlev/images/eric3-screen-11.png
http://www.die-offenbachs.de/detlev/images/eric3-screen-12.png
http://www.die-offenbachs.de/detlev/images/eric3-screen-13.png
http://www.die-offenbachs.de/detlev/images/eric3-screen-14.png
- HanoiProblem/상협 . . . . 5 matches
* An = 2An-1 + 1
hanoi(n-1, a,inout(a,b)); //1 번 단계 시작점 a에서 입력된 목적지링(b) 말고 다른 쪽으로 옮긴다.
hanoi(n-1, inout(a,b),b); //3번 단계 첫번째 단계에서 간곳-inout(a,b) 에서 목적지링(b) 으로 간다..
hanoi(n-1, a,inout(a,b));
hanoi(n-1, inout(a,b),b);
- [Lovely]boy^_^/USACO/BrokenNecklace . . . . 5 matches
cur = temp[len-1];
if(temp[len-1-j] != 'w')
cur = temp[len-1-j];
if(cur == temp[len-1-j] || temp[len-1-j] == 'w')
- HaskellExercises/Wikibook . . . . 4 matches
factorial n = n * factorial (n-1)
rep a n = a:rep a (n-1)
takeInt n (x:xs) = x:takeInt (n-1) xs
dropInt n (x:xs) = dropInt (n-1) xs
- PPProject/Colume2Exercises . . . . 4 matches
start = i; end = n-1;
start = 0; end = n-1;
swap(str,0,i-1, n-i, n-1);
// swap(str, 0, i-1, n - i, n-1);
- TkinterProgramming/Calculator2 . . . . 4 matches
('Sin', 'Sin-1', 'E', KC1, FUN, 'sin'),
('Tan', 'Tan-1', 'G', KC1, FUN, 'tan'),
('7', 'Un-1', 'O', KC2, KEY, '7'),
('8', 'Vn-1', 'P', KC2, KEY, '8'),
- VonNeumannAirport/Leonardong . . . . 4 matches
return self.matrix[origin-1][destination-1]
self.matrix[origin-1][traffic.destination-1] = traffic.load
- gusul/김태진 . . . . 4 matches
* 문제를 단순화하여, 앞으로 홀수번 시행이 최적인 경우, 지금 하는 사람이 승리하게 된다. 이를 이용하여 n-1번째 시행에서(지는 시점을 첫번째로 하여 거꾸로 올라간다.) n번째로 올 때 모두 홀수인 경우에만 해당 시점의 사람이 지게되는데 (1,3,5번에서 7번으로 갈 수 있는데 1,3,5번의 시행횟수가 모두 홀수개) 하나라도 짝수에서 오는 경우가 있으면 그 경우가 상대방이 무조건 지는 경우이므로 최선이다.
* n-1번째가 모두 홀수이면 자신의 차례 n번째는 짝수여서 지게된다.
* n-1번째에 하나라도 짝수 경우가 있으면 n번째에서 n-1로 만들 때 짝수로 만들 수 있으므로 이기게된다.
- 새싹교실/2012/AClass/2회차 . . . . 4 matches
for(i=0;i<n-1;i++){
return n+Sum(n-1);
return n*fact(n-1);
return n+hap(n-1);
- HanoiProblem/영동 . . . . 3 matches
dec n ;n-1
call Move ;Move(n-1, from, by, to)
dec n ;n-1
- 새싹교실/2011/Noname . . . . 3 matches
return n*factorial(n-1);
hanoi(n-1,from,temp,to);
hanoi(n-1,temp,to,from);
- 새싹교실/2012/AClass/1회차 . . . . 3 matches
3. 혜림이누나, 상희누나 과제를 for문을 각각 3개, 4개만 써서 해보세요.(hint 2*n-1)
08.c첨부 – 힌트(2*n-1)이용해서 다이아몬드 윗부분은 찍었는데 밑에는 못하겠네영!
3.혜림이누나, 상희누나 과제를 for문을 각각 3개, 4개만 써서 해보세요.(hint 2*n-1)
- 새싹교실/2012/열반/120514 . . . . 3 matches
return n*fact(n-1);
hanoi(n-1. a. c. b);
hanoi(n-1, b, a, c);
- 알고리즘2주숙제 . . . . 3 matches
시그마(i=1~n)i*(Hi) = n*(n+1)/2*(Hn) -(n-1)*n/4의 식이 사실임을 증명하라
G(n) = G(n-1) + 2G(n-2) + 3G(n-3) + ... + nG(0), for n > 0
5. Let us use a generating function to find a formula for s<sub>n</sub>, where s<sub>0</sub> = s<sub>1</sub> = 1, and s<sub>n</sub> = -s<sub>n-1</sub> + 6s<sub>n-2</sub> for n ≥ 2.
- DataStructure/Graph . . . . 2 matches
* for n-1 번 반복
* 초기 행렬을 A(-1)[i, j] 로 한다. 반복할수록 괄호 안의 값을 올려준다. 이걸 n-1까지 반복한다.
- HanoiProblem/은지 . . . . 2 matches
hanoi(n-1, from, to, by);
hanoi(n-1, by, from, to);
- HanoiProblem/재동 . . . . 2 matches
hanoi ( n-1, start, extra, finish );
hanoi(n-1, extra, finish, start);
- InterWikiIcons . . . . 2 matches
* [[Icon(moin-new.gif)]]Amazon - http://puzzlet.org/imgs/amazon-16.png
* Jangnan - http://puzzlet.org/imgs/jangnan-16.png (16x16x16)
- JollyJumpers/강소현 . . . . 2 matches
if(Math.abs(arr[i+1]-arr[i]) >= size)//size 넘어가면 1~n-1을 넘어가니까.
if(jollyNum[i] == 0)//1~n-1 중 하나라도 포함 안하면 not jolly
- JollyJumpers/남훈 . . . . 2 matches
return [0] * (n-1)
for i in range(n-1):
- Linux/MakingLinuxDaemon . . . . 2 matches
105 1334 1 1334 1334 TS 21 Oct15 ? 00:00:00 /usr/bin/dbus-daemon-1 --system
105 1334 1 1334 1334 TS 21 Oct15 ? 00:00:00 /usr/bin/dbus-daemon-1 --system
- PythonForStatement . . . . 2 matches
These represent finite ordered sets indexed by non-negative numbers. The built-in function len() returns the number of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, ..., n-1. Item i of sequence a is selected by a[i].
음수가 아닌수로 제한되어 있으며 순서가 매겨진 집합. 내장함수인 len()는 시퀀스의 아이템 갯수를 반환한다. 시퀀스의 길이라 n이면, 인덱스는 0..n-1 까지의 범위를 가진다. 시퀀스의 아이템 i는 a[i]로 선택된다.
- ReverseAndAdd/문보창 . . . . 2 matches
t = temp / pow(10, len-1-i);
temp -= t * pow(10, len-1-i);
- Self-describingSequence/1002 . . . . 2 matches
if len(table) > n-1:
return table[n-1]
- SubVersionPractice . . . . 2 matches
[http://subversion.tigris.org/files/documents/15/25364/svn-1.2.3-setup.exe Download Subversion]
[http://prdownloads.sourceforge.net/tortoisesvn/TortoiseSVN-1.3.0.5377-RC2-svn-1.3.0.msi?download Download TortoiseSVN]
- 데블스캠프2009/월요일/연습문제/svn코드레이스/박준호 . . . . 2 matches
void main(){int n,i,j;scanf("%d",&n);for(i=0;i<n;i++){for(j=0;j<n;j++){(i==0||i==n-1)?printf("*"):((j==0||j==n-1)?printf("*"):printf(" "));}puts("");}}
- 마름모출력/S.S.S . . . . 2 matches
print ' '*(a-n)+p*(2*n-1)
print ' '*(a-n)+p*(2*n-1)
- 마름모출력/김유정 . . . . 2 matches
for (column=a ; column > row ; column=column-1)
for(star=0;star<2*column-1;star=star+1)
- 몸짱프로젝트/HanoiProblem . . . . 2 matches
hanoi(n-1, x, y, z);
hanoi(n-1, y, z, x);
- 문자반대출력/김태훈zyint . . . . 2 matches
if( (len-1)-p <= p ) break;
exchange_char(&str[p], &str[len-1-p]);
- 새싹교실/2012/AClass . . . . 2 matches
1. 혜림이누나, 상희누나 과제를 for문을 각각 3개, 4개만 써서 해보세요.(hint 2*n-1)
sum=fact(n-1)*n;
- 새싹교실/2012/아무거나/2회차 . . . . 2 matches
while (a<=n-1) {
for(a=1;a<=2*n-1;a++){
- 새싹교실/2012/주먹밥 . . . . 2 matches
return n * factorial(n-1);
return n + summary(n-1);
- 수학의정석/집합의연산/이영호 . . . . 2 matches
메모리의 크기는 Ssub(n) = 2Ssub(n-1) + asub(n-1) + 1 이 된다.
- 파스칼삼각형/윤종하 . . . . 2 matches
else return n*fac(n-1);
return n*fac(n-1)
- 피보나치/곽세환 . . . . 2 matches
cout << f(1, 1, n-1);
return f(b, a+b, n-1);
- 하노이탑/김태훈 . . . . 2 matches
hanoi(n-1,a,c,b);
hanoi(n-1,c,b,a);
- 하노이탑/한유선김민경 . . . . 2 matches
movehanoi(from, to, temp, n-1);
movehanoi(temp, from, to, n-1);
- 호너의법칙/남도연 . . . . 2 matches
int t=a[i+1];//t는 an-1의 역할을 한다.
j=function_value;//j는 같은 식을 반복하기 위한 변수.처음에 j는 an, 그다음에는 an*X+an-1이 된다.
- Basic알고리즘/팰린드롬/허아영 . . . . 1 match
for(int i = 0; i < (len-1)/2; i += 2)
- BeeMaja/문보창 . . . . 1 match
go_left_down(len-1, n, curCoord);
- BeeMaja/변형진 . . . . 1 match
for($c=0; $c<$n-1&&$w>1; $c++,$x--,$y++) $w--;
- Bridge/권영기 . . . . 1 match
p = n-1;
- CarmichaelNumbers . . . . 1 match
페르마 테스트와 같이 빠른 속도로 매우 정확하게 소수 여부를 판단할 수 있는 확률적 소수 테스트 방법이라는 것이 있다. 소수 여부를 판단해야 할 정수 n이 주어졌을 때 a는 2이상 n-1이하의 난수라고 하자. 그러면 다음과 같은 식이 성립하면 n은 소수일 가능성이 있다.
- CompleteTreeLabeling/조현태 . . . . 1 match
such_point=remain-1;
- FactorialFactors/1002 . . . . 1 match
F(n) = Count(n) + F(n-1)
- HowManyFibs? . . . . 1 match
f<sub>n</sub>:=f<sub>n-1</sub> + f<sub>n-2</sub (n≥3)
- HowManyFibs?/1002 . . . . 1 match
if n in [1,2]: return s[n-1]
- HowManyPiecesOfLand? . . . . 1 match
타원 모양의 땅이 주어져 있는데, 그 땅의 테두리에 n개의 점을 임의로 선택한다. 그리고 나서 각 점들을 다른 모든 점과 직선으로 연결하면 n(n-1)/2 개의 선이 만들어진다. 이 때 테두리 위의 점을 잘 선택해서 나뉘어지는 땅의 개수가 최대가 되도록 만들면 몇 개의 조각으로 나눌 수 있을까? 다음은 n = 6 일 때 땅을 나눠놓은 모습이다.
- HowManyPiecesOfLand?/하기웅 . . . . 1 match
return (n.Power(4)-6*(n.Power(3))+23*n*n-18*n+24)/24;
- HowManyZerosAndDigits/김회영 . . . . 1 match
return n*factorial(n-1);
- JollyJumpers . . . . 1 match
n개의 정수(n>0)로 이루어진 수열에 대해 서로 인접해 있는 두 수의 차가 1에서 n-1까지의 값을 모두 가지면 그 수열을 유쾌한 점퍼(jolly jumper)라고 부른다. 예를 들어 다음과 같은 수열에서
- JollyJumpers/iruril . . . . 1 match
// 두 수의 차 값은 1 ~ n-1
- JollyJumpers/곽세환 . . . . 1 match
// 차이값이 1 ~ n-1 사이에 모두 존재해야한다
- JollyJumpers/이승한 . . . . 1 match
int checkJolly(int * array, int differ, bool programEnd){ //differ는 n-1의 값을 가진다.
- JumpJump/김태진 . . . . 1 match
sum = ((n-1)*n)/2 +1;
- Mario . . . . 1 match
if(k==n-1){
- MoinMoinTodo . . . . 1 match
* Support for -- (‐ ?), << and >> (french quotes) and possibly any (Latin-1) SGML entity.
- Pairsumonious_Numbers/권영기 . . . . 1 match
for(i = 0; i<n*(n-1)/2; i++){
- RandomWalk2/상규 . . . . 1 match
if(currentj==-1) currentj=n-1;
- ReverseAndAdd/김정현 . . . . 1 match
if a[n]!=a[len(a)-n-1]:
- SVN/Server . . . . 1 match
* [http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91] 에서 svn-1.3.1-setup.exe 다운 받아서 설치
- Score/1002 . . . . 1 match
각 sub 단위의 "O" 의 갯수를 세고 이에 대해 각 부분별로 f(n) = f(n-1)+1 에 대한 총합 계산을 해주면 되겠다 생각.
- Shoemaker's_Problem/김태진 . . . . 1 match
if(j!=N-1)printf(" ");
if(i!=n-1)printf("\n\n");
- StacksOfFlapjacks/이동현 . . . . 1 match
그 다음엔 0~n-1 까지 케익을 가지고 동일한 동작을 반복하고.. 이렇게 최고 n번정도만 하면 팬케익이 작은것부터 큰것까지 정렬된다.
- UglyNumbers/승한 . . . . 1 match
print n-1
- WOWAddOn/2011년프로젝트/초성퀴즈 . . . . 1 match
stringtable[#stringtable+1] = cstc(len, str:sub(i,i+len-1))
- study C++/ 한유선 . . . . 1 match
for(i=len-1; i>=0; i--){
- usa_selfish/곽병학 . . . . 1 match
int last = p[n-1].b;
- 데블스캠프2006/SVN . . . . 1 match
* SVN download : http://prdownloads.sourceforge.net/tortoisesvn/TortoiseSVN-1.3.5.6804-svn-1.3.2.msi?use_mirror=heanet
- 데블스캠프2006/월요일/연습문제/for/임다찬 . . . . 1 match
return n*factorial(n-1);
- 데블스캠프2012/넷째날/후기 . . . . 1 match
* [서영주] - 처음에 gcd나 3n-1문제의 풀이 과정에 대한 얘기는 그렇게 어렵지 않았는데 갑자기 사발뒤집기 문제 들어가면서 멘탈이... 백트래킹에 대한 얘기 자체를 조금 더 다뤄줬으면 좋았을 것 같았습니다. 이미 아는 사람들한테는 어떨지 모르겠지만 잘 모르는 저학년에게는 비주얼 스튜디오를 이용한 디버깅도 좋은 내용이 됐다고 생각합니다. 나중에 되면 정말 디버깅 지겹게 하게 되니까요 -_-
- 루프는0부터? . . . . 1 match
보통 비대칭형 범위는 대칭형 범위보다 더 사용하기 쉽습니다. 왜냐하면 다음과 같은 중요한 속성이 있기 때문입니다. [m, n)과 같은 형식의 범위는 n-m개의 요소들을 가지며 [m,n]의 형식은 n-m+1의 요소들을 가집니다. 따라서 [0, rows)에서 요소들의 개수는 직관적인데 반해, [1, rows]에서 요소들의 개수는 덜 직관적 입니다. 이러한 속성차이는, 특히 빈 범위의 경우에 더 뚜렷합니다. 만약 비 대칭형 범위를 사용한다면, 빈 범위를 [m,n)으로 표현할수 있지만, 대칭형 범위에서는 [n, n-1]을 사용해야 합니다. 범위의 끝이 시작보다 더 작을수 있따는 가능성은 프로그램 설계시 끝이 정의되지 않아 버리는 문제를 야기 시킬수 있습니다.
- 마름모출력/임다찬 . . . . 1 match
for(i=0;i<byun-1;i++){
- 마름모출력/허아영 . . . . 1 match
print p*(2*(n-1-i)-1)
- 문자열검색/허아영 . . . . 1 match
for(i = 0; i <= str_len-1; i++)
- 반복문자열/임인택 . . . . 1 match
message target msg n = message (target++msg++"\n") (msg) (n-1)
- 새싹교실/2011/Pixar/5월 . . . . 1 match
* 오늘은 재귀함수 복습하는 차원에서 하노이탑을 같이 구현해봤습니다. 아마 좀 어려웠을거예요. 저도 1학년때 어디서 열심히 보고 짰는데 방학되고 짜보려니 또 생각이 안 나서 헤맸던 기억이 나네요. 오늘 해봐서 알겠지만 완성된 하노이탑 소스코드가 원반 하나하나를 순서대로 옮기는 프로그램은 아니었어요. 그런데도 실행시키니 제대로 움직이는 걸 볼 수 있었죠. 만약 원반 하나하나를 따로 생각했다면 원반이 7개만 되어도 생각하기 너무 어려웠겠지만 n개의 원반을 옮기는 문제를 n-1개의 원반을 옮기는 문제와 n번째 원반을 옮기는 문제로 나눠서 생각하니 간단하게 해결됐죠. 앞으로 학년이 올라가면서 더 복잡한 프로그램을 짜다보면 이런 접근이 얼마나 중요한지 느끼게 될 거예요. 문제를 해결할 때 전체를 보고 단계를 나눌 수 있어야합니다. 우리가 그림을 그릴때 숲을 그린다고 하면 어떤 귀퉁이의 나뭇잎 하나부터 그려나가는 게 아니잖아요. 나무의 배치, 뼈대같은 것을 먼저 그려야 균형잡힌 그림을 그릴 수 있듯 프로그램을 만들 때도 큰 그림을 먼저 생각해볼 수 있었으면 좋겠습니다. 물론 그런 접근이 단번에 몸에 익지는 않을 거예요 ㅋㅋ
- 새싹교실/2011/學高/8회차 . . . . 1 match
* 아래 소스코드를 큰 틀로 해서 recursive function을 이용하여 하노이의 탑 시뮬레이션 프로그램을 작성하라(이동 상황을 출력한다, 전역변수를 이용하여 횟수를 카운트하게 하여 H_n = 2*H_n-1 + 1 점화식에 맞는 답이 나옴을 보여야한다.)
- 새싹교실/2012/개차반 . . . . 1 match
* 2진수를 10진수로 바꾸려면 2진수의 자릿수에 따라 2^(n-1)을 곱해주면 된다
- 새싹교실/2012/아우토반/뒷반/5.11 . . . . 1 match
if(l!=n-1)
- 새싹교실/2012/아우토반/앞반/4.5 . . . . 1 match
for(j=0; j<(2*n-1); j++)
- 새싹교실/2012/열반/120402 . . . . 1 match
printstar(n-1);
- 새싹교실/2012/열반/120507 . . . . 1 match
* A[n]으로 선언할 경우 첨자는 0 부터 n-1 까지 쓸 수 있습니다.
- 숫자를한글로바꾸기/허아영 . . . . 1 match
if(i != (number_len-1))
- 조영준/파스칼삼각형/이전버전 . . . . 1 match
return _triangle[row-1][column-1];
- 최소정수의합/임인택2 . . . . 1 match
mysum n = n + mysum (n-1)
- 최소정수의합/조현태 . . . . 1 match
이런 실수를..;; 고등학교때 항상 수열에서 n-1까지의 합을 구하는 버릇때문에 공식을 잘못 적었군요.^^
- 캠이랑놀자/051228 . . . . 1 match
return n*fact(n-1)
- 파스칼삼각형/강희경 . . . . 1 match
for(int j = 1; j < column-1; j++){ //숫자는 자신의 머리 위에 있는 2개의 숫자를 더한 값
- 파스칼삼각형/김수경 . . . . 1 match
return Pascal(m-1, n-1) + Pascal(m-1, n);
- 파스칼삼각형/김태훈zyint . . . . 1 match
return n*factorial(n-1);
- 파스칼삼각형/변형진 . . . . 1 match
return $n*factorial($n-1);
- 파스칼삼각형/송지원 . . . . 1 match
return n * factorial(n-1);
- 피보나치/고준영 . . . . 1 match
return (pibo($n-1) + pibo($n-2));
- 피보나치/김홍선 . . . . 1 match
pibo(n-1);
- 피보나치/방선희 . . . . 1 match
return arr[n-1];
- 피보나치/아영,규완,보창 . . . . 1 match
return pivo(n-1) + pivo(n-2)
- 피보나치/이동현,오승혁 . . . . 1 match
return fibo(in-1) + fibo(in-2);
- 피보나치/임인택2 . . . . 1 match
fib n = fib (n-2) + fib (n-1)
- 피보나치/조현태 . . . . 1 match
return pibo( n-1)+pibo(n-2)
Found 104 matching pages out of 7555 total pages (5000 pages are searched)
You can also click here to search title.