Difference between r1.3 and the current
@@ -1,11 +1,23 @@
[[TableOfContents]]
=== Gradient Descent for Multiple Variables ===
=== Polynomial Regression ===
=== Normal Equation ===
==== Feature Normalize ====
{{{
* 모든 것을 정리하려고 하니 효율이 떨어진다. 중요하다 생각되는 것만 우선 정리하기로..
* 이 문서에 있는 사진이나 예제의 상당수는 [https://www.coursera.org/course/ml Coursera/ML강의]에 남겨져 있음. PPT도 제공하므로 꼭 확인하세요.
=== Multiple Features ====== Gradient Descent for Multiple Variables ===
==== Cost Function ====
attachment:CostFunctionWithMultipleVariables.PNG
=== Feature Scaling === attachment:Mean_Normalization.png
=== Learning Rate ====== Polynomial Regression ===
=== Normal Equation ===
attachment:Normal_Equation.PNG
=== 정리 ===
==== Gradient Descent ====
* Learning Rate α를 잘 정하는게 중요.
* Feature의 수가 클 때 사용. (100000개 이상)
==== Normal Equation ====
* attachment:invert.png 의 계산이 필요. O(N^3)의 시간복잡도를 가짐.
* Feature의 수가 적을 때 사용. (10000개 까지)
=== Octave로 Linear Regression With Multiple Varables 구현하기 ======= Feature Normalize ====
{{{
@@ -27,7 +39,64 @@
X_norm(:, i) = (X_norm(:, i ) - mu(i)) / sigma(i);
end
}}}
* mean : 평균 구하는 함수.
* std : 표준 편차 구하는 함수.
* 표준 편차를 이용해서 데이터를 정규화 시킴.
end
}}}
* std : 표준 편차 구하는 함수.
* 표준 편차를 이용해서 데이터를 정규화 시킴.
==== Compute Cost ====
{{{
function J = computeCostMulti(X, y, theta)
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
% J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
J = (X * theta - y)' * (X * theta - y) / (2 * m);
% =========================================================================
end
}}}
* 왜 이게 되는지는 모르겠음. 아는 사람은 추가바람.
==== Gradient Descent ====
{{{
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
temp = theta;
E = X * theta - y;
for j=1:size(X, 2)
delta = sum(E .* X(:, j)) / m;
temp(j, 1) = temp(j, 1) - alpha * delta;
end
theta = temp;
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
%
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
end
}}}
----
[MachineLearning스터디]
Contents
- 모든 것을 정리하려고 하니 효율이 떨어진다. 중요하다 생각되는 것만 우선 정리하기로..
- 이 문서에 있는 사진이나 예제의 상당수는 Coursera/ML강의에 남겨져 있음. PPT도 제공하므로 꼭 확인하세요.
7.2. Normal Equation ¶
- 의 계산이 필요. O(N^3)의 시간복잡도를 가짐.[PNG image (2.74 KB)]
- Feature의 수가 적을 때 사용. (10000개 까지)
8.1. Feature Normalize ¶
function [X_norm, mu, sigma] = featureNormalize(X) %FEATURENORMALIZE Normalizes the features in X % FEATURENORMALIZE(X) returns a normalized version of X where % the mean value of each feature is 0 and the standard deviation % is 1. This is often a good preprocessing step to do when % working with learning algorithms. % You need to set these values correctly X_norm = X; mu = zeros(1, size(X, 2)); sigma = zeros(1, size(X, 2)); n_of_feature = size(X_norm, 2); for i = 1:n_of_feature mu(i) = mean(X_norm(:, i)); sigma(i) = std(X_norm(:, i)); X_norm(:, i) = (X_norm(:, i ) - mu(i)) / sigma(i); end
- mean : 평균 구하는 함수.
- std : 표준 편차 구하는 함수.
- 표준 편차를 이용해서 데이터를 정규화 시킴.
8.2. Compute Cost ¶
function J = computeCostMulti(X, y, theta) %COMPUTECOSTMULTI Compute cost for linear regression with multiple variables % J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the % parameter for linear regression to fit the data points in X and y % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta % You should set J to the cost. J = (X * theta - y)' * (X * theta - y) / (2 * m); % ========================================================================= end
- 왜 이게 되는지는 모르겠음. 아는 사람은 추가바람.
8.3. Gradient Descent ¶
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters) %GRADIENTDESCENTMULTI Performs gradient descent to learn theta % theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by % taking num_iters gradient steps with learning rate alpha % Initialize some useful values m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters temp = theta; E = X * theta - y; for j=1:size(X, 2) delta = sum(E .* X(:, j)) / m; temp(j, 1) = temp(j, 1) - alpha * delta; end theta = temp; % ====================== YOUR CODE HERE ====================== % Instructions: Perform a single gradient step on the parameter vector % theta. % % Hint: While debugging, it can be useful to print out the values % of the cost function (computeCostMulti) and gradient here. % % ============================================================ % Save the cost J in every iteration J_history(iter) = computeCostMulti(X, y, theta); end