U E D R , A S I H C RSS

MachineLearning스터디/Introduction (rev. 1.6)

Machine Learning스터디/Introduction


1. 머신 러닝이란?

  • 인공지능을 점진적으로 발달시키는 것
  • Reinforcement learning, Recommender system이라고도 부른다.

1.1.

  • 데이터 마이닝
  • 무인으로 적용되는 응용프로그램(무인 헬리콥터, 자연어 처리 등등.)

1.2. Tom Mitchell(1998)의 정의

  • Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.
  • 번역을 하려 했으나, 맛깔나게 번역을 못하겠으므로... :(

1.3. 머신 러닝의 종류

  • Supervised Learning
  • Unsupervised Learning

2. Supervised Learning

  • 데이터에 대한 답이 주어진 경우.

2.1. Regression

  • 치역이 연속적인 값인 경우.
    HousingPrice.png
    [PNG image (31.26 KB)]

  • 예: 집의 평수에 따른 집 값 추론

2.2. Classification

  • 치역이 이산적인 값인 경우.
    Breast_Cancer.PNG
    [PNG image (35.64 KB)]

  • 예: 종양의 크기에 해당 종양이 악성인지 판단.
Valid XHTML 1.0! Valid CSS! powered by MoniWiki
last modified 2021-02-07 05:23:42
Processing time 0.0190 sec