Difference between r1.5 and the current
@@ -1,5 +1,32 @@
== Classification ==
* [Naive Bayesian Classifier]
== 예비 지식 ==
* 확률과 통계
* 선형대수학
== 분류(Classification) ==
* [http://wiki.zeropage.org/wiki.php/Naive%20Bayesian%20Classifier Naive Bayesian Classifier]
* [Artificial Neural Network]
== 강화학습(Reinforce Learning) ==
* 강의
* [http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html UCL Course on RL]
* [https://www.youtube.com/watch?v=2pWv7GOvuf0 Youtube]
* 책
* [http://incompleteideas.net/sutton/book/bookdraft2017june19.pdf Reinforcement Learning: An Introduction]
* [https://dnddnjs.gitbooks.io/rl/content Fundamental of Reinforcement Learning]
* Slide
* [http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf Deep RL Tutorial - David Silver]
* [https://www.slideshare.net/carpedm20/ss-63116251 텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016]
* Articles
* [http://ishuca.tistory.com/391 Simple Reinforcement Learning with Tensorflow 한국어 번역]
* Resource
* [https://gym.openai.com OpenAI Gym] : 실습 가능한 환경을 제공
* Code
* [https://github.com/golbin/TensorFlow-Tutorials/tree/master/10%20-%20DQN tensorflow tutorial]
== 링크들 ==http://wiki.zeropage.org/wiki.php/MachineLearning%EC%8A%A4%ED%84%B0%EB%94%94
* http://wiki.zeropage.org/wiki.php/MachineLearning%EC%8A%A4%ED%84%B0%EB%94%94
* http://www.reddit.com/r/MachineLearning/comments/20i0vi/meta_collection_of_links_for_beginners_faq
* http://peekaboo-vision.blogspot.kr/2013/01/machine-learning-cheat-sheet-for-scikit.html
* [https://github.com/NVIDIA/DIGITS Deep Learning GPU Training System]
== Links ==
* https://www.coursera.org/course/neuralnets
예비 지식 ¶
- 확률과 통계
- 선형대수학
분류(Classification) ¶
- Naive Bayesian Classifier
- Artificial Neural Network
강화학습(Reinforce Learning) ¶
- 강의
- 책
- Slide
- Articles
- Resource
- OpenAI Gym : 실습 가능한 환경을 제공
- OpenAI Gym : 실습 가능한 환경을 제공
- Code