U E D R , A S I H C RSS

LaLaLand/0720 (rev. 1.6)

La La Land/0720


Warning:
ERROR: LaTeX does not work properly.
in /var/www/html/plugin/processor/latex.php on line 210

1. 스터디 설명

7월 20일 스터디는
  • 3단원(Determinant)와 6단원(Orthogonality and Least Squares) 정리하기

2. 스터디 내용

  • 단원명
    • 단원 내용
식으로 작성해주시기 바랍니다.
  • 3.1 : Introduction to Determinants
    • Determinants 가 나오게 된 배경 : 행렬 자체의 값을 비교해야 될 필요성이 생겨서
    • 2 by 2 Matrix의 Determinant 구하는 법 : ad - bc
    • 3 by 3 이상 Matrix의 Determinant 구하는 법 : 한 row를 기준으로 2X2 행렬로 3개를 쪼개서 + - +를 하는 식으로 계산
      • ex) detA = a11detA11 - a12detA12 + a13detA13(3X3 행렬의 경우)
  • 3.2 : Properties of Determinants
    • Row Operation에 따른 Determinant 값의 변화
      • Replacement : 놀랍게도 아무 변화 없음
      • Interchange : 부호가 반대가 됨
      • Scaling : 곱한 값만큼 Determinant도 곱해지게 됨
    • Determinant가 0이 아니면 A는 invertiable하다.
    • Matrix를 Transpose를 해도 Determinant 값은 그대로다.
    • det AB = det A * det B
  • 3.3 : Cramer's Rule, Volume, and Linear Transformations
    • Cramer's Rule : 방정식을 빨리 풀기 위한 해법
      • A행렬의 j열을 벡터 b로 치환 한 행렬을 Aj(b)라 표기
      • xi=detAi(b)/detA가 된다.
    • 어떠한 넓이나 부피를 나타내는 행렬 S을 Linear Transformation을 시킬 경우
      • area of T(S) = area of S * abs(detA)

* 6.1 : Inner Product, Length, and Orthogonality
  • The Inner Product
    • Rn 공간에 벡터 u와 v가 존재하면 이것들을 nx1 matrices 라고 생각할 수 있다. 이 때 u'v는 1x1 matrix가 되는데 이것을 u와 v의 inner product(내적)라고 한다. 이 값은 실수이며, 표기는 u·v 로 한다.
  • u,v,w를 Rn에 있는 벡터, c가 스칼라일 때
    • u·v = v·u
    • (u+v)·w = u·w + v·w
    • (cu)·v = c(u·v) = u·(cv)
    • u·u >= 0 이고, u·u=0은 u=0 일 때만 성립한다.
  • The Length of a Vector
    • 벡터 v의 길이는 ∥v∥= √v·v 이고 ∥v∥^2 = v·v 이다.
    • 길이가 1인 벡터를 unit vector 라고 한다.
    • 0이 아닌 벡터 v가 있을 때, unit vector인 u = (1/∥v∥)∥v∥ 이다.
  • Distance in Rn
    • Rn에 존재하는 벡터 u, v 사이의 거리는 dist(u,v)라고 쓴다. 즉 dist(u,v) = ∥u-v∥
  • Orthogonal Vectors
    • Rn에 존재하는 벡터 u, v가 있을 때, u·v = 0이면, 두 벡터는 orthogonal 하다.
    • 두 벡터 u, v에서 ∥u+v∥^2 = ∥u∥^2 + ∥v∥^2 이면, 두 벡터는 orthogonal 하다.
    • mxn matrix A에서 A의 row space와 null space는 orthogonal하고, A의 column space와 left nullspace는 orthogonal이다.


* 6.2 : Orthogonal Sets
  • Orthogonal Set 정의
    • Rn의 벡터 집합{u1, u2 , .... up}에서 ui ·uj = 0 (i≠j) 이면 orthogonal set이라고 한다.
    • Rn에서 S = {u1, u2 , .... up}가 0이 아닌 orthogonal set이라면, S는 linearly independent이고, S에 의해 span된 subspace의 basis가 된다.
  • An Orthogonal Projections
    • Rn에 0이 아닌 벡터 u가 있고, Rn에 존재하는 벡터 y를 두 벡터로 분해한다고 생각해보자. y를 u의 스칼라 곱인 벡터와, u와 orthogonal한 벡터로 분해한다. y = p + z 꼴
    • 벡터 y를 u에 projection한 벡터를 p라고 하자. 그러면 p = (y·u/u·u) * u 로 정의된다.
    • 예시) y=(7,6), u=(4,2)라고 한다. 그러면
    • y·u = 40, u·u = 20이다. p = (40/20) * u 이므로 (8,4)가 된다.
    • u에 orthogonal한 벡터 y의 성분은 y-p = (-1,2) 이다. 따라서 y = (8,4)+(-1,2)로 분해할 수 있다.
    • (8,4)는 p, (-1,2)는 z이다.
  • Orthonomal Sets
    • Rn의 벡터 집합{u1, u2 , .... up}에서 벡터들이 unit vector이면 orth onomal set이라고 한다.
    • W를 위의 벡터집합에 의해 span된 subspace라고 하면, {u1, u2 , .... up}는 orthonomal basis 이다.
    • mxn matrix U가 있을 때, U'U = I 이면 matrix U는 orthonomal columns을 가진다.
  • U가 orthonomal columns를 가진 mxn matrix이고, x와 y가 Rn에 있을 때
    • ∥Ux∥ = ∥x∥
    • (Ux)·(Uy) = x·y
    • x·y=0 일 때만, (Ux)·(Uy) = 0 이다.


* 6.3 Orthogonal Projections
  • Orthogonal Decomposition
    • W를 Rn의 subspace라고 하면 Rn에 있는 y는 y = p + z로 쓸 수 있다.
    • p는 W에 존재하고, z는 W와 직교인 공간에 존재한다.
    • 만일 {u1, u2 , .... up}가 W의 orthogonal basis라면 p = (y·u1/u1·u1)*u1 + ... + (y·up/up·up)*up 이고, z = y-p이다.
    • 벡터 p는 orthogonal projection of y onto W라고 부른다.

  • Properties of Orthogonal Projections
    • p는 W공간에서 y에 가장 가까운 점이 된다. W공간에서 p가 아닌 모든 v에 대해 ∥y-p∥< ∥y-v∥이 성립하기 때문이다.



* 6.4 The Gram-Schmdit Process
  • Gram-Schmdit
    • 의 nonzero subspace 에 orthogonal 혹은 orthogonal basis 를 만드는 알고리즘
Valid XHTML 1.0! Valid CSS! powered by MoniWiki
last modified 2021-02-07 05:23:37
Processing time 0.0420 sec