U E D R , A S I H C RSS

LaLaLand/0720 (rev. 1.2)

La La Land/0720


1. 스터디 설명

7월 20일 스터디는
  • 3단원(Determinant)와 6단원(Orthogonality and Least Squares) 정리하기

2. 스터디 내용

  • 단원명
    • 단원 내용
식으로 작성해주시기 바랍니다.
* 6.1 : Inner Product, Length, and Orthogonality
  • The Inner Product
    • Rn 공간에 벡터 u와 v가 존재하면 이것들을 nx1 matrices 라고 생각할 수 있다. 이 때 u'v는 1x1 matrix가 되는데 이것을 u와 v의 inner product(내적)라고 한다. 이 값은 실수이며, 표기는 u·v 로 한다.
  • u,v,w를 Rn에 있는 벡터, c가 스칼라일 때
    • u·v = v·u
    • (u+v)·w = u·w + v·w
    • (cu)·v = c(u·v) = u·(cv)
    • u·u >= 0 이고, u·u=0은 u=0 일 때만 성립한다.
  • The Length of a Vector
    • 벡터 v의 길이는 ∥v∥= √v·v 이고 ∥v∥^2 = v·v 이다.
    • 길이가 1인 벡터를 unit vector 라고 한다.
    • 0이 아닌 벡터 v가 있을 때, unit vector인 u = (1/∥v∥)∥v∥ 이다.
  • Distance in Rn
    • Rn에 존재하는 벡터 u, v 사이의 거리는 dist(u,v)라고 쓴다. 즉 dist(u,v) = ∥u-v∥
  • Orthogonal Vectors
    • Rn에 존재하는 벡터 u, v가 있을 때, u·v = 0이면, 두 벡터는 orthogonal 하다.
    • 두 벡터 u, v에서 ∥u+v∥^2 = ∥u∥^2 + ∥v∥^2 이면, 두 벡터는 orthogonal 하다.
    • mxn matrix A에서 A의 row space와 null space는 orthogonal하고, A의 column space와 left nullspace는 orthogonal이다.
Valid XHTML 1.0! Valid CSS! powered by MoniWiki
last modified 2021-02-07 05:23:37
Processing time 0.0200 sec