E D R , A S I H C RSS

Carmichael Numbers

›๋ฌธ๋ณดธฐ
----
ธฐ๋„:B(A,B,C), „ณต๋ฅ :๋ณด†ต(๋‚ฎŒ,๋ณด†ต,๋†’Œ), ๋ ˆ๋ฒจ:2(1~4)

About CarmichaelNumbers

•”˜•Œ ๋ฆฌ˜ ‘—๋Š” ฐ †Œˆ˜๋ฅผ ™œšฉ•˜๋Š” ฒƒ๋„ žˆ๋‹ค. •˜ง€๋งŒ –ด๋–ค ฐ ˆ˜ฐ€ †Œˆ˜ง€๋ฅผ Œ๋‹•˜๋Š” ฒƒ€ ธ๋ฆฌ ‰ฝง€ •Š๋‹ค.
Ž˜๋ฅด๋งˆ …ŒŠคŠธ™€ ฐ™ด ๋น ๋ฅธ †๋„๋กœ ๋งคšฐ  •™••˜ฒŒ †Œˆ˜ —ฌ๋ถ€๋ฅผ Œ๋‹•  ˆ˜ žˆ๋Š” ™•๋ฅ   †Œˆ˜ …ŒŠคŠธ ๋ฐฉ๋ฒ•ด๋ผ๋Š” ฒƒžˆ๋‹ค. †Œˆ˜ —ฌ๋ถ€๋ฅผ Œ๋‹•••   •ˆ˜ nฃผ–ดกŒ„•Œ a๋Š” 2ƒ n-1•˜˜ ๋‚œˆ˜  •˜ž. ธ๋Ÿฌ๋ฉด ๋‹Œณผ ฐ™€ ‹„ฑ๋ฆฝ•˜๋ฉด n€ †Œˆ˜ฐ€๋Šฅ„žˆ๋‹ค.

a^n mod n = a

–ด๋–ค  •ˆ˜ฐ€ ด๋Ÿฌ•œ Ž˜๋ฅด๋งˆ …ŒŠคŠธ๋ฅผ —ฌ๋Ÿฌ ๋ฒˆ †ตณผ•˜๋ฉด  •ˆ˜๋Š” †Œˆ˜ฐ€๋Šฅ„ด ๋†’๋‹  •  ˆ˜ žˆ๋‹ค. •˜ง€๋งŒ •ˆ ‹€ †Œ‹๋„ žˆ๋‹ค. •„ˆ˜(†Œˆ˜ฐ€ •„‹Œ ˆ˜) ‘—๋Š” ˆ˜๋ณด๋‹ž‘€ ๋ชจ๋“   •ˆ˜— ๋Œ€•Ž˜๋ฅด๋งˆ …ŒŠคŠธ๋ฅผ †ตณผ•˜๋Š” ฒƒ๋„ žˆ๋‹ค. ด๋Ÿฐ ˆ˜๋ฅผ นด๋งˆด ˆ˜  ๋ถ€๋ฅธ๋‹ค.

ฃผ–ด„  •ˆ˜ฐ€ นด๋งˆด ˆ˜ง€ …ŒŠคŠธ•˜ธฐ œ„•œ ”„๋กœธ๋žจ„ ๋งŒ๋“ค–ด๋ผ.

Input

ž…๋ € —ฌ๋Ÿฌ „๋กœ ตฌ„ฑ๋˜๋ฉฐ ฐ „—๋Š” ž‘€ –‘˜  •ˆ˜ n(2

Output

ž…๋ ฅ๋œ ฐ ˆ˜— ๋Œ€••„๋ž˜— žˆ๋Š” œ ˜ˆ— ๋‚˜™€žˆ๋Š” ‹œผ๋กœ ˆ˜ฐ€ นด๋งˆด ˆ˜ง€ •„‹Œง€๋ฅผ Œ๋‹•œ ฒฐณผ๋ฅผ œ •˜ผ.

Sample Input

~cpp 
1729
17
561
1109
431
0

Sample Output

~cpp 
The number 1729 is a Carmichael number.
17 is normal.
The number 561 is a Carmichael number.
1109 is normal.
431 is normal.

’€

ž‘„ž ‚ฌšฉ–ธ–ด œ๋ฐœ‹œ„ ฝ”๋“œ
๋ฌธ๋ณดฐฝ C++ 3h 30m CarmichaelNumbers/๋ฌธ๋ณดฐฝ
กฐ˜„ƒœ C . CarmichaelNumbers/กฐ˜„ƒœ

“ฐ๋ ˆ๋“œ

Valid XHTML 1.0! Valid CSS! powered by MoniWiki
last modified 2021-02-07 05:22:49
Processing time 0.0133 sec