세부 내용 ¶
확률적 모델링: 확률적 모델링을 통해 딥러닝을 할 수 있음.
Supervised: H: x → y (H: hypothesis, x: 입력 데이터, y: 출력 데이터)
Unsupervised: 위의 식에서 y가 없고 x만 존재.
-x 라는 입력데이터가 주어졌을 때 그에 해당하는 출력인 y를 알려주고
x를 입력했을 때 y라는 데이터가 나올 수 있는 가설을 세우고
그 차이를 줄이는 것.
그 차이를 줄이는 것.
이 경우 x에서 특징들을 찾아내어 분석
Reinforcement: 알파고의 자기 학습을 예로 들면,알파고가 바둑을 두었을 경우 그 경우가 좋은 경우인지 나쁜 경우인지
나중에 reward를 알려줌.
이를 설명하면
어떠한 상태 S(t)는 어떠한 행동 A(t)에 의해 S(t+1)로 변하게 되는데
이 경우가 좋은 지 나쁜지는 나중에 결과로 알 수 있음.
나중에 PS(t),A(t):reward 로 GOOD / BAD 를 알려줌.
//오늘은 자세히 설명을 안하신다고 언급
나중에 reward를 알려줌.
이를 설명하면
어떠한 상태 S(t)는 어떠한 행동 A(t)에 의해 S(t+1)로 변하게 되는데
이 경우가 좋은 지 나쁜지는 나중에 결과로 알 수 있음.
나중에 PS(t),A(t):reward 로 GOOD / BAD 를 알려줌.
//오늘은 자세히 설명을 안하신다고 언급