import pandas as pd import keras from sklearn.cross_validation import train_test_split from keras.utils.np_utils import to_categorical train = pd.read_csv("../input/train.csv") test = pd.read_csv("../input/test.csv") y_train = train['label'].as_matrix() X_train = train.drop('label', axis=1).as_matrix() X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.30) model = keras.models.Sequential() model.add(keras.layers.Dense(64, input_dim=28*28, activation='relu')) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(32, activation='relu')) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(16, activation='relu')) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adagrad', metrics=['accuracy']) model.fit(X_train, to_categorical(y_train, 10), nb_epoch=5, batch_size=600) score = model.evaluate(X_test, to_categorical(y_test, 10), batch_size=700) print(score) print(model.predict(X_test))[0] print(y_test[0])