U E D R , A S I H C RSS

머신러닝스터디/2016/2016_07_09 (rev. 1.5)

머신러닝스터디/2016/2016_07_09

내용


tokenizer = Tokenizer(nb_words=1000)
X_train = tokenizer.sequences_to_matrix(X_train, mode="freq")

  • optimizer
    • adamax 를 썼는데 accuracy가 50% 대에 머무름
      • tensorflow는 adamax를 제공하지 않음. keras 자체 구현됨(code).

코드

import keras
import numpy as np
from keras.datasets import imdb
from keras.preprocessing.text import Tokenizer
from keras.models import Sequential
from keras.layers import Dense, Dropout, Embedding, LSTM

(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=1000)

from keras.preprocessing.sequence import pad_sequences
X_train = pad_sequences(X_train, 1000)
X_test = pad_sequences(X_test, 1000)

model = Sequential()
model.add(Embedding(1000, 64, input_length=1000))
model.add(LSTM(output_dim=32, activation='sigmoid', inner_activation='hard_sigmoid'))
model.add(Dense(16, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(8, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(1, activation="sigmoid"))

model.compile(loss="binary_crossentropy", optimizer="adagrad", metrics=["accuracy"])

model.fit(X_train, y_train, batch_size=500, nb_epoch=100)
model.evaluate(X_test, y_test, batch_size=1000)
pred = model.predict(X_test, batch_size=20000)

print (pred[0], y_test[0])
print (pred[1], y_test[1])
print (pred[2], y_test[2])

다음 시간에는

  • Coursera 동영상 week 7 보기

더 보기

Valid XHTML 1.0! Valid CSS! powered by MoniWiki
last modified 2021-02-07 05:29:27
Processing time 0.0404 sec