Difference between r1.1 and the current
@@ -1,3 +1,8 @@
[머신러닝스터디/2016]
[머신러닝스터디/2016/목차]
== 내용 ==
* 아래 코드에서 마지막 레이어의 아웃풋은 0~1 사이의 값이 나와야 하므로 relu가 아니라 sigmoid를 쓴다.
=== 코드 ===
{{{from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
@@ -35,3 +40,6 @@
print(model.predict(np.array([X_test[0]])))
print(y_test[0])
}}}
print(y_test[0])
}}}
== 다음 시간에는 ==
* 6/27은 데블스 캠프가 있는 날이라 쉽니다.
== 더 보기 ==
내용 ¶
- 아래 코드에서 마지막 레이어의 아웃풋은 0~1 사이의 값이 나와야 하므로 relu가 아니라 sigmoid를 쓴다.
코드 ¶
from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.datasets import mnist from keras.layers.core import Reshape from keras.utils.np_utils import to_categorical import numpy as np (X_train, y_train), (X_test, y_test) = mnist.load_data() model = Sequential() model.add(Reshape((28*28,), input_shape=(28,28))) model.add(Dense(60000, input_dim=28*28, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adagrad', metrics=['accuracy']) model.fit(X_train, to_categorical(y_train, 10), nb_epoch=3, batch_size=200) score = model.evaluate(X_test, to_categorical(y_test, 10), batch_size=10000) print(score) # output print(model.predict(np.array([X_test[0]]))) print(y_test[0])
다음 시간에는 ¶
- 6/27은 데블스 캠프가 있는 날이라 쉽니다.