- 머신러닝스터디/2016
- 머신러닝스터디/2016/2016_03_19
- 머신러닝스터디/2016/2016_03_26
- 머신러닝스터디/2016/2016_04_02
- 머신러닝스터디/2016/2016_04_09
- 머신러닝스터디/2016/2016_04_16
- 머신러닝스터디/2016/2016_04_30
- 머신러닝스터디/2016/2016_05_07
- 머신러닝스터디/2016/2016_05_14
- 머신러닝스터디/2016/2016_05_21
- 머신러닝스터디/2016/2016_05_28
- 머신러닝스터디/2016/2016_06_04
- 머신러닝스터디/2016/2016_06_11
- 머신러닝스터디/2016/2016_06_18
- 머신러닝스터디/2016/2016_07_02
- 머신러닝스터디/2016/2016_07_09
- 머신러닝스터디/2016/2016_07_16
- 머신러닝스터디/2016/2016_07_23
- 머신러닝스터디/2016/2016_07_30
- 머신러닝스터디/2016/2016_08_06
- 머신러닝스터디/2016/2016_08_13
- 머신러닝스터디/2016/2016_08_20
- 머신러닝스터디/2016/2016_08_27
- 머신러닝스터디/2016/2016_09_03
- 머신러닝스터디/2016/2016_09_10
- 머신러닝스터디/2016/2016_09_24
- 머신러닝스터디/2016/2016_10_01
- 머신러닝스터디/2016/2016_10_08
- 머신러닝스터디/2016/2016_10_29
- 머신러닝스터디/2016/2016_11_05
- 머신러닝스터디/2016/2016_12_10
- 머신러닝스터디/2016/목차
내용 ¶
- keras 사용
 
- mnist
 
- keras mnist 예제파일 위치: https://s3.amazonaws.com/img-datasets/mnist.pkl.gz
 - 코드 실행하면 자동으로 받아짐
 
 
- 코드 실행하면 자동으로 받아짐
코드 ¶
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.datasets import mnist
from keras.layers.core import Reshape
import numpy as np
(X_train, y_train), (X_test, y_test) = mnist.load_data()
model = Sequential()
model.add(Reshape((28*28,), input_shape=(28,28)))
model.add(Dense(60000, input_dim=28*28, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
              optimizer='adagrad',
              metrics=['accuracy'])
y_train_array = np.zeros((60000, 10))
y_test_array = np.zeros((10000, 10))
for i in range(60000):
  y_train_array[i][y_train[i]] = 1
for i in range(10000):
  y_test_array[i][y_test[i]] = 1
model.fit(X_train, y_train_array,
          nb_epoch=3,
          batch_size=16)
score = model.evaluate(X_test, y_test_array, batch_size=10000)
# TODO
print(score)













