Difference between r1.3 and the current
@@ -1,4 +1,5 @@
[[pagelist(^(머신러닝스터디/2016))]]
[머신러닝스터디/2016]
[머신러닝스터디/2016/목차]
== 내용 ==* keras 사용
* mnist
@@ -28,7 +29,8 @@
optimizer='adagrad',
metrics=['accuracy'])
y_test_array = np.zeros((10000, 10))
for i in range(60000):
metrics=['accuracy'])
# y_train and y_test is simple integer of 0 to 9
# Need to be transformed to array
y_train_array = np.zeros((60000, 10))y_test_array = np.zeros((10000, 10))
for i in range(60000):
@@ -46,6 +48,19 @@
print(score)
}}}
== 후기 ==
* Week 6 보기
== 더 보기 ==
}}}
== 후기 ==
* [서지혜]: 맥에어에서 돌렸더니 엄청 오래걸렸다.. 클라우드 세팅해야될거같음. 아래는 결과물. 다 돌리고 출력을 어떻게 해야할지 모르겠네.
{{{
Using Theano backend.
Epoch 1/3
60000/60000 [==============================] - 3122s - loss: 14.4306 - acc: 0.1047
Epoch 2/3
60000/60000 [==============================] - 3055s - loss: 14.4370 - acc: 0.1043
Epoch 3/3
60000/60000 [==============================] - 3135s - loss: 14.4453 - acc: 0.1038
10000/10000 [==============================] - 398s
[14.461154937744141, 0.10279999673366547]
}}}
== 다음 시간에는 ==* Week 6 보기
== 더 보기 ==
내용 ¶
- keras 사용
- mnist
- keras mnist 예제파일 위치: https://s3.amazonaws.com/img-datasets/mnist.pkl.gz
- 코드 실행하면 자동으로 받아짐
- 코드 실행하면 자동으로 받아짐
코드 ¶
from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.datasets import mnist from keras.layers.core import Reshape import numpy as np (X_train, y_train), (X_test, y_test) = mnist.load_data() model = Sequential() model.add(Reshape((28*28,), input_shape=(28,28))) model.add(Dense(60000, input_dim=28*28, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adagrad', metrics=['accuracy']) # y_train and y_test is simple integer of 0 to 9 # Need to be transformed to array y_train_array = np.zeros((60000, 10)) y_test_array = np.zeros((10000, 10)) for i in range(60000): y_train_array[i][y_train[i]] = 1 for i in range(10000): y_test_array[i][y_test[i]] = 1 model.fit(X_train, y_train_array, nb_epoch=3, batch_size=16) score = model.evaluate(X_test, y_test_array, batch_size=10000) # TODO print(score)
후기 ¶
- 서지혜: 맥에어에서 돌렸더니 엄청 오래걸렸다.. 클라우드 세팅해야될거같음. 아래는 결과물. 다 돌리고 출력을 어떻게 해야할지 모르겠네.
Using Theano backend. Epoch 1/3 60000/60000 [==============================] - 3122s - loss: 14.4306 - acc: 0.1047 Epoch 2/3 60000/60000 [==============================] - 3055s - loss: 14.4370 - acc: 0.1043 Epoch 3/3 60000/60000 [==============================] - 3135s - loss: 14.4453 - acc: 0.1038 10000/10000 [==============================] - 398s [14.461154937744141, 0.10279999673366547]
다음 시간에는 ¶
- Week 6 보기