import tensorflow as tf # AND OR NXOR XOR # (0, 0) => 0 (0, 0) => 0 (0, 0) => 1 (0, 0) => 0 # (0, 1) => 0 (0, 1) => 1 (0, 1) => 0 (0, 1) => 1 # (1, 0) => 0 (1, 0) => 1 (1, 0) => 0 (1, 0) => 1 # (1, 1) => 1 (1, 1) => 1 (1, 1) => 1 (1, 1) => 0 W1 = tf.Variable(tf.random_uniform([2, 2])) b1 = tf.Variable(tf.random_uniform([2])) W2 = tf.Variable(tf.random_uniform([2, 1])) b2 = tf.Variable(tf.random_uniform([1])) def logic_gate(x): hidden = tf.sigmoid(tf.matmul(x, W1) + b1) return tf.sigmoid(tf.matmul(hidden, W2) + b2) x = tf.placeholder("float", [None, 2]) y = tf.placeholder("float", [None, 1]) value = logic_gate(x) loss = tf.reduce_sum(tf.pow(y-value, 2)) # loss = tf.reduce_mean(-tf.reduce_sum(y*tf.log(value), reduction_indices=1)) # Don't work optimize = tf.train.GradientDescentOptimizer(0.01).minimize(loss) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) for i in range(30001): result = sess.run(optimize, feed_dict={x: [[0, 0], [0, 1], [1, 0], [1, 1]], y: [[1], [0], [0], [1]]}) if (i % 1000 == 0): print("Epoch: ", i) print(sess.run([value, loss], feed_dict={x: [[0, 0], [0, 1], [1, 0], [1, 1]], y: [[1], [0], [0], [1]]}))