from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import time
from six.moves import xrange
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.examples.tutorials.mnist import mnist
FLAGS = None
def placeholder_inputs(batch_size):
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
mnist.IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
return images_placeholder, labels_placeholder
def fill_feed_dict(data_set, images_pl, labels_pl):
images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,
FLAGS.fake_data)
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict
def do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_set):
true_count = 0
steps_per_epoch = data_set.num_examples // FLAGS.batch_size
num_examples = steps_per_epoch * FLAGS.batch_size
for step in xrange(steps_per_epoch):
feed_dict = fill_feed_dict(data_set,
images_placeholder,
labels_placeholder)
true_count += sess.run(eval_correct, feed_dict=feed_dict)
precision = float(true_count) / num_examples
print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' %
(num_examples, true_count, precision))
def run_training():
data_sets = input_data.read_data_sets(FLAGS.input_data_dir, FLAGS.fake_data)
with tf.Graph().as_default():
images_placeholder, labels_placeholder = placeholder_inputs(
FLAGS.batch_size)
logits = mnist.inference(images_placeholder,
FLAGS.hidden1,
FLAGS.hidden2)
loss = mnist.loss(logits, labels_placeholder)
train_op = mnist.training(loss, FLAGS.learning_rate)
eval_correct = mnist.evaluation(logits, labels_placeholder)
summary = tf.summary.merge_all()
init = tf.global_variables_initializer()
saver = tf.train.Saver()
sess = tf.Session()
summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph)
sess.run(init)
for step in xrange(FLAGS.max_steps):
start_time = time.time()
feed_dict = fill_feed_dict(data_sets.train,
images_placeholder,
labels_placeholder)
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict)
duration = time.time() - start_time
if step % 100 == 0:
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
summary_str = sess.run(summary, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
summary_writer.flush()
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')
saver.save(sess, checkpoint_file, global_step=step)
print('Training Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.train)
print('Validation Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.validation)
print('Test Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_sets.test)
def main(_):
if tf.gfile.Exists(FLAGS.log_dir):
tf.gfile.DeleteRecursively(FLAGS.log_dir)
tf.gfile.MakeDirs(FLAGS.log_dir)
run_training()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--learning_rate',
type=float,
default=0.01,
help='Initial learning rate.'
)
parser.add_argument(
'--max_steps',
type=int,
default=2000,
help='Number of steps to run trainer.'
)
parser.add_argument(
'--hidden1',
type=int,
default=128,
help='Number of units in hidden layer 1.'
)
parser.add_argument(
'--hidden2',
type=int,
default=32,
help='Number of units in hidden layer 2.'
)
parser.add_argument(
'--batch_size',
type=int,
default=100,
help='Batch size. Must divide evenly into the dataset sizes.'
)
parser.add_argument(
'--input_data_dir',
type=str,
default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
'tensorflow/mnist/input_data'),
help='Directory to put the input data.'
)
parser.add_argument(
'--log_dir',
type=str,
default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
'tensorflow/mnist/logs/fully_connected_feed'),
help='Directory to put the log data.'
)
parser.add_argument(
'--fake_data',
default=False,
help='If true, uses fake data for unit testing.',
action='store_true'
)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)