1.3 벡터 방정식
선형 연립 방정식의 중요한 특성들은 벡터들의 개념과 표시법에 의해 묘사되어 질 수 있습니다. 이 부분에서는 벡터들과 평범한 방정식들의 연립들이 연관된 방정식들을 연결해 줍니다. 이 백터라는 용어는 다양한 수학적이고 물리적인 문맥(우리가 Chapter 4, “백터 공간”에서 논의할)을 나타냅니다. 그때까지, 벡터는 숫자들의 정렬된 목록으로 써 의미를 가집니다. 이 간단한 생각은 우리에게 흥미롭고 중요한 적용들을 가능한 빠르게 얻게 도와줍니다.
R^2에서의 벡터들
오직 하나의 열만을 가진 행렬을 열 벡터 또는 간단히 벡터라고 부름니다. u,v,w는 두개의 entry를 가진 벡터들의 예 입니다. (w1과 w2는 실수). 두개의 entry를 지닌 모든 벡터들의 집합을 R^2라고 나타냅니다. 이 R은 벡터에서 entry들이 실수라는 걸 의미하고, 지수 2는 각각의 벡터들이 두개의 entry를 가지고 있다는걸 의미합니다.
두개의 벡터에서 대응되는 entry들이 같을 때 두 벡터들(R^2에 있는)이 같다라고 합니다.
이와 같이 (4,7)과 (7,4)는 R^2에 있는 벡터들이 정돈된 실수들의 쌍이기 때문에 같지 않습니다.
R^2에 있는 주어진 두개의 백터 u와 v에 대해서 그들의 합 즉, 벡터 u+v는 u와 v의 대응하는 entry들을 각 각 더함으로 얻어집니다. 예를 들어
(1,-2) + (2,5) = (1+2,-2+5) = (3,3)
주어진 벡터 u과 실수 c에 대해서 c에 대한 u의 스칼라 곱은 u의 각 각 의 entry에 c를 곱함으로 써 얻어진 cu벡터 입니다.
Cu에서 c를 스칼라 라고 부릅니다. 이것은 획이 가는 활자의 형태로 쓰여집니다. (벡터 u를 나타내는 볼드체 활자로부터 구별하기 위해서)
스칼라 곱과 벡터 합의 연사자들은 다음의 예에서 처럼 결합될 수 있습니다.
Example 1(p.25)
R^2의 기하학 적인 묘사
평면에서 사각 좌표 시스템을 간주해봅시다. 이 평면에서 각각의 점은 정렬된 숫자들의 쌍으로 결정되기 때문에 우리는 기하학적인 점 (a,b)를 열 벡터로 인식할 수 있습니다.
그래서 우리는 R^2를 이 평면에서의 모든 점들의 집함으로 간주 할 수 있습니다.
Fig1을 보자.
(3,1)과 같은 벡터들의 기하학적인 시각화는 종종 원점에서부터 점 (3,-1)까지의 화살표를 포함함으로써 도와줍니다. (Fig2에서)
이같은 경우에 개인적인 점들(화살표 그것 스스로에 대해서)은 특별한 중요성을 가지고 있지 않습니다.
두 벡터들의 합은 유용한 기하학적 표시법을 가지고 있습니다. 북석적인 기하학구조에 의해 앞의 규칙이 학인되어 질 수 있습니다.
합에 대한 평행사변형 규칙 |
만약 R^2에있는 u와 v가 평면상에서 점들로 표현된다면, 그때 u+v는 평행사변형의 제 4의 꼭짓점에 대응한다.(다른 벡터들은 u,0, 그리고 v) Fig 3를 보자 |
Example 2
Example 3
R^3에서 벡터들
R^3에서 벡터들은 세개의 entry를 지는 3x1 열 행렬들이다. 그들은 기하학적으로 삼차원 좌표 공간에 있는 때때로 시각적으로 명확성을 포함하는 원점으로 부터의 화살표들을 가진 점들로 나타내 집니다. a와 2a 벡터들은 Fig 6 에서 처럼 나타내집니다.
R^n에서 벡터들
만약 n이 양수라면, R^n은 모든 n개의 정렬된 실수들의 목록들의 집합으로 표시됩니다. (보통 u처럼 nx1열 행렬들로서 쓰여지는)
모든 entry가 0인 벡터를 영 벡터라고 하고, 0이라고 표기합니다. (0 벡터에서 entry의 수는 맥락으로 부터 명확해 질 것입니다.)
R^n에서의 같음과 스칼라 곱과 벡터 합 의 연산자들은 R^2에서 와 같이 entry와 entry에 대응하여 정의되어 집니다. 이 벡터들에 대한 연산자들은 실수에대한 대응하는 속성들로부터 직접적으로 증명할 수 있는 다음의 속성들을 가집니다. Practice Problem 1과 Exercises 33 그리고 34 (이 섹션 마지막에 있는) 을 보십시오.
R^n에서의 대수적인 속성 |
(i) u+v = v+u |
(ii) (u+v)+w = u+(v+w) |
(iii) u + 0 = 0 + u = u |
(iv) u+(-u) = -u + u = 0 (-u는 (-1)u를 나타냄) |
(v) c(u+v) = cu+ cv |
(vi) (c+d)u = cu + du |
(vii) c(du) = (cd)u |
(viii) 1u = u |
표기법의 간력성을 위해 u+(-1)v와 같은 벡터는 종종 u-v로써 쓰입니다. Fig 7은 u-v가 u와 -v의 합으로써 보여줍니다.
선형 결합
R^n에서 v1,v2,.....,vp 의 주어진 벡터와 주어진 스칼라들 c1,c2,....,cp에 대해서, 벡터 y는 y = c1v1+ .... + cpvp로써 정의되어 집니다.
그리고 이것은 c1,...cp의 weights를 같는 v1,..,vp의 선형결합이라고 불려집니다. 이와 같은 선형결합을 실행할때, 위의 속성 (ii)는 우리에게 괄호를 누락시키는걸 허용해줍니다. 선형결합에서 weights는 0을 포함한 어느 실수라도 될 수 있습니다. 예를들어 벡터 (p28의 벡터 3개) v1과 v2의 몇몇의 선형결합과 같이 나타낼 수 있습니다.
Example 4
Example 5
Example 5를 보면,a1,a2,b 벡터들은 첨가된 행령의 열들인걸 알 수 있습니다. 간결 성을 위해,
a1 a2 b라 이것의 열들을 인식하기위한 방법으로 씁니다.
(1)의 백터 방정식으로 부터 즉시 첨가 행렬을 쓰는 방법은 Example 5의 중간의 과정을 통하지 않아도 간결합니다.